排序算法是最基本的算法之一,一般来说,排序算法分成内部排序和外部排序。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。本文主要盘点了十种常见排序算法,它们可以按照时间复杂度划分,也可以按照稳定性划分,下面让小编来详细谈谈吧!

一、时间复杂度:

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序;

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序;

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

二、稳定性:

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序;

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

三、常见排序算法

1、冒泡排序

算法步骤

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2、选择排序

算法步骤

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

重复第二步,直到所有元素均排序完毕。

3、插入排序

算法步骤

将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

4、希尔排序

算法步骤

选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

按增量序列个数 k,对序列进行 k 趟排序;

每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度

即为整个序列的长度。

5、归并排序

算法步骤

申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

设定两个指针,最初位置分别为两个已经排序序列的起始位置;

比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

重复步骤 3 直到某一指针达到序列尾;

将另一序列剩下的所有元素直接复制到合并序列尾。

6、快速排序

算法步骤

从数列中挑出一个元素,称为 “基准”(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序

7、堆排序

算法步骤

创建一个堆 H[0……n-1];

把堆首(最大值)和堆尾互换;

把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

重复步骤 2,直到堆的尺寸为 1。

8、计数排序

算法步骤

花O(n)的时间扫描一下整个序列 A,获取最小值 min 和最大值 max

开辟一块新的空间创建新的数组 B,长度为 ( max - min + 1)

数组 B 中 index 的元素记录的值是 A 中某元素出现的次数

最后输出目标整数序列,具体的逻辑是遍历数组 B,输出相应元素以及对应的个数

9、桶排序

算法步骤

设置固定数量的空桶。

把数据放到对应的桶中。

对每个不为空的桶中数据进行排序。

拼接不为空的桶中数据,得到结果

10、基数排序

算法步骤

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零

从最低位开始,依次进行一次排序

从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列

以上内容为大家介绍了十种常见的排序算法,本文由多测师亲自撰写,希望对大家有所帮助。https://www.duoceshi.com/xwzx-hydt/1542.html

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部